Modeling the voltage loss mechanisms in lithium-sulfur cells: the importance of electrolyte resistance and precipitation kinetics.
نویسندگان
چکیده
Understanding of the complex electrochemical, transport, and phase-change phenomena in Li-S cells requires experimental characterization in tandem with mechanistic modeling. However, existing Li-S models currently contradict some key features of experimental findings, particularly the evolution of cell resistance during discharge. We demonstrate that, by introducing a concentration-dependent electrolyte conductivity, the correct trends in voltage drop due to electrolyte resistance and activation overpotentials are retrieved. In addition, we reveal the existence of an often overlooked potential drop mechanism in the low voltage-plateau which originates from the limited rate of Li2S precipitation.
منابع مشابه
Electrode Materials for Lithium Ion Batteries: A Review
Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...
متن کاملVoltage increase of aqueous lithium-ion batteries by Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic
In this research, a lithium ion conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FESEM). The XRD patterns exhib...
متن کاملImproving the performance of Lithium-Sulfur Batteries using Sulfur-(TiO2/SiO2) yolk–shell Nanostructure
Lithium-Sulfur (Li-S) batteries are considered as one of the promising candidates for next-generation Li batteries in near future. Although, these batteries are suffering from certain drawbacks such as rapid capacity fading during the charge and discharge process due to the dissolution of polysulfides. In this paper, Sulfur/metal oxide (TiO2 and SiO2) yolk–shell structures have been successfull...
متن کاملاثر پیری نقاط کوانتومی در سلولهای خورشیدی حساس شده با نانوبلورهای CdS وPbS
In this research, solar cells sensitized with CdS and PbS Nanocrystalline metal sulfides, chemically grown by SILAR, were fabricated and characterized. PV experiments including I-V test in the presence of light and dark,Vocdecay, and Electrochemical impedance spectroscopy were performed on the Cells made through this method in the presence of light and dark and in the time period of 2, 3, 6 and...
متن کاملImportance of in-situ techniques in the investigation of rechargeable lithium-sulfur batteries
The lithium-sulfur (Li-S) battery promises with its high theoretical capacity (1675 mA h) and energy density (2600 Wh kg) to be one of the energy storage systems of the future. However, the electrochemical processes and degradation mechanisms of the cells need further investigation to improve their capacity and safety. In this work, in-situ characterization methods were applied for the characte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 35 شماره
صفحات -
تاریخ انتشار 2015